Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Why Comma Selection Can Help with the Escape from Local Optima

نویسندگان

  • Jens Jägersküpper
  • Tobias Storch
چکیده

We investigate (1,λ) ESs using isotropic mutations for optimization in R by means of a theoretical runtime analysis. In particular, a constant offspring-population size λ will be of interest. We start off by considering an adaptation-less (1,2) ES minimizing a linear function. Subsequently, a piecewise linear function with a jump/cliff is considered, where a (1+λ) ES gets trapped, i. e., (at least) an exponential (in n) number of steps are necessary to escape the local-optimum region. The (1,2) ES, however, manages to overcome the cliff in an almost unnoticeable number of steps. Finally, we outline (because of the page limit) how the reasoning and the calculations can be extended to the scenario where a (1,λ) ES using Gaussian mutations minimizes Cliff, a bimodal, spherically symmetric function already considered in the literature, which is merely Sphere with a jump in the function value at a certain distance from the minimum. For λ a constant large enough, the (1,λ) ES manages to conquer the global-optimum region – in contrast to (1+λ) ESs which get trapped.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence TAKEOVER TIME IN PARALLEL POPULATIONS WITH MIGRATION

The term takeover time regarding selection methods used in evolutionary algorithms denotes the (expected) number of iterations of the selection method until the entire population consists of copies of the best individual, provided that the initial population consists of a single copy of the best individual whereas the remaining individuals are worse. Here, this notion is extended to parallel su...

متن کامل

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence How Randomized Search Heuristics Find Maximum Cliques in Planar Graphs*

Surprisingly, general search heuristics often solve combinatorial problems quite sufficiently, although they do not outperform specialized algorithms. Here, the behavior of simple randomized optimizers on the maximum clique problem on planar graphs is investigated rigorously. The focus is on the worst-, average-, and semi-average-case behaviors. In semi-random planar graph models an adversary i...

متن کامل

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Pareto Set and EMOA Bahavior for Simple Multimodal Multiobjective Functions

Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...

متن کامل

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions

Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006